1.概述
線性判別式分析(Linear Discriminant Analysis),簡稱為LDA。也稱為Fisher線性判別(Fisher Linear Discriminant,F(xiàn)LD),是模式識別的經(jīng)典算法,在1996年由Belhumeur引入模式識別和人工智能領(lǐng)域。
基本思想是將高維的模式樣本投影到最佳鑒別矢量空間,以達到抽取分類信息和壓縮特征空間維數(shù)的效果,投影后保證模式樣本在新的子空間有最大的類間距離和最小的類內(nèi)距離,即模式在該空間中有最佳的可分離性。
LDA與PCA都是常用的降維技術(shù)。PCA主要是從特征的協(xié)方差角度,去找到比較好的投影方式。LDA更多的是考慮了標注,即希望投影后不同類別之間數(shù)據(jù)點的距離更大,同一類別的數(shù)據(jù)點更緊湊。
但是LDA有兩個假設(shè):1.樣本數(shù)據(jù)服從正態(tài)分布,2.各類得協(xié)方差相等。雖然這些在實際中不一定滿足,但是LDA被證明是非常有效的降維方法,其線性模型對于噪音的魯棒性效果比較好,不容易過擬合。
2.圖解說明(圖片來自網(wǎng)絡(luò))
延伸閱讀
- ssh框架 2016-09-30
- 阿里移動安全 [無線安全]玩轉(zhuǎn)無線電——不安全的藍牙鎖 2017-07-26
- 消息隊列NetMQ 原理分析4-Socket、Session、Option和Pipe 2024-03-26
- Selective Search for Object Recognition 論文筆記【圖片目標分割】 2017-07-26
- 詞向量-LRWE模型-更好地識別反義詞同義詞 2017-07-26
- 從棧不平衡問題 理解 calling convention 2017-07-26
- php imagemagick 處理 圖片剪切、壓縮、合并、插入文本、背景色透明 2017-07-26
- Swift實現(xiàn)JSON轉(zhuǎn)Model - HandyJSON使用講解 2017-07-26
- 阿里移動安全 Android端惡意鎖屏勒索應(yīng)用分析 2017-07-26
- 集合結(jié)合數(shù)據(jù)結(jié)構(gòu)來看看(二) 2017-07-26